

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

December 30, 2013

WELL WORK PERMIT

Horizontal 6A Well

This permit, API Well Number: 47-1706418, issued to ANTERO RESOURCES CORPORATION, is evidence of permission granted to perform the specified well work at the location described on the attached pages and located on the attached plat, subject to the provisions of Chapter 22 of the West Virginia Code of 1931, as amended, and all rules and regulations promulgated thereunder, and to all conditions and provisions outlined in the pages attached hereto. Notification shall be given by the operator to the Oil and Gas Inspector at least 24 hours prior to the construction of roads, locations, and/or pits for any permitted work. In addition, the well operator shall notify the same inspector 24 hours before any actual well work is commenced and prior to running and cementing casing. Spills or emergency discharges must be promptly reported by the operator to 1-800-642-3074 and to the Oil and Gas inspector.

Please be advised that form WR-35, Well Operators Report of Well Work is to be submitted to this office within 90 days completion of permitted well work, as should form WR-34 Discharge Monitoring Report within 30 days of discharge of pits, if applicable. Failure to abide by all statutory and regulatory provisions governing all duties and operations hereunder may result in suspension or revocation of this permit and, in addition, may result in civil and/or criminal penalties being imposed upon the operators.

In addition to the applicable requirements of this permit, and the statutes and rules governing oil and gas activity in WV, this permit may contain specific conditions which must be followed. Permit conditions are attached to this cover letter.

Per 35CSR-4-5.2.g this permit will expire in two (2) years from the issue date unless permitted well work is commenced. If there are any questions, please feel free to contact me at (304) 926-0499 ext. 1654.

James Martin

Chief

Operator's Well No: DUFFLEMEYER UNIT 1H

Farm Name: DUFFLEMEYER, MICHAEL B., . I

API Well Number: 47-1706418

Permit Type: Horizontal 6A Well

Date Issued: 12/30/2013

Promoting a healthy environment.

API Number: 17-06418

PERMIT CONDITIONS

West Virginia Code § 22-6A-8(d) allows the Office of Oil and Gas to place specific conditions upon this permit. Permit conditions have the same effect as law. Failure to adhere to the specified permit conditions may result in enforcement action.

CONDITIONS

- This proposed activity may require permit coverage from the United States Army Corps of Engineers (USACOE). Through this permit, you are hereby being advised to consult with USACOE regarding this proposed activity.
- 2. If the operator encounters an unanticipated void, or an anticipated void at an unanticipated depth, the operator shall notify the inspector within 24 hours. Modifications to the casing program may be necessary to comply with W. Va. Code § 22-6A-5a (12), which requires drilling to a minimum depth of thirty feet below the bottom of the void, and installing a minimum of twenty (20) feet of casing. Under no circumstance should the operator drill more than fifty (50) feet below the bottom of the void or install less than twenty (20) feet of casing below the bottom of the void.
- 3. When compacting fills, each lift before compaction shall not be more than 12 inches in height, and the moisture content of the fill material shall be within limits as determined by the Standard Proctor Density test of the actual soils used in specific engineered fill, ASTM D698, Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort, to achieve 95 % compaction of the optimum density. Each lift shall be tested for compaction, with a minimum of two tests per lift per acre of fill. All test results shall be maintained on site and available for review.
- Operator shall install signage per § 22-6A-8g (6) (B) at all source water locations included in their approved water management plan within 24 hours of water management plan activation.
- 5. Oil and gas water supply wells will be registered with the Office of Oil and Gas and all such wells will be constructed and plugged in accordance with the standards of the Bureau for Public Health set forth in its Legislative rule entitled Water Well Regulations, 64 C.S.R. 19. Operator is to contact the Bureau of Public Health regarding permit requirements. In lieu of plugging, the operator may transfer the well to the surface owner upon agreement of the parties. All drinking water wells within fifteen hundred feet of the water supply well shall be flow tested by the operator upon request of the drinking well owner prior to operating the water supply well.
- Pursuant to the requirements pertaining to the sampling of domestic water supply wells/springs the operator shall, no later than thirty (30) days after receipt of analytical data provide a written copy to the Chief and any of the users who may have requested such analyses.
- 7. If any explosion or other accident causing loss of life or serious personal injury occurs in or about a well or well work on a well, the well operator or its contractor shall give notice, stating the particulars of the explosion or accident, to the oil and gas inspector and the Chief, within 24 hours of said accident.
- During the casing and cementing process, in the event cement does not return to the surface, the oil and gas inspector shall be notified within 24 hours.

WW-6B (9/13)

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION, OFFICE OF OIL AND GAS WELL WORK PERMIT APPLICATION

1) Well Opera	tor: Antero F	Resources Co	rporation	494488557	017-Doddridge	New Milton	New Milton
			100	Operator ID	County	District	Quadrangle
2) Operator's	Well Number	: Dufflemeye	er Unit 1H	Well Pad	Name: Snake	Run Pad	
3) Farm Name	Surface Own	ner: Michael	Dufflemeye	er et al Public Roa	d Access: CR	25	
4) Elevation, c	current ground	1: ~1113'	Ele	evation, proposed	post-construction	on: 1081'	
5) Well Type	(a) Gas		Oil		erground Storag		
	Other						
	(b)If Gas	Shallow		Deep	•		20
		Horizontal	-				V 3
Existing Pac	d: Yes or No	No					12.5
_	_			pated Thickness at 60 feet, Associated		, ,	1 pc
8) Proposed To	otal Vertical I	Depth: 7400	סעד י				
9) Formation a	t Total Vertic	al Depth:	Marcellus S	hale			
10) Proposed T	Total Measure	ed Depth: 1	4,600' MD				
11) Proposed F	Horizontal Le	g Length: 6	642'				
12) Approxima	ite Fresh Wat	er Strata Dep	ths:	51', 156'			
13) Method to	Determine Fr	esh Water D	epths: O	ffset well records. Dep	ths have been adj	usted accordi	ng to surface elevations,
14) Approxima	te Saltwater I	Depths: 11	94'				
15) Approxima	te Coal Seam	Depths: 20	1', 435', 74	6, 1080'			
16) Approxima	te Depth to P	ossible Void	(coal min	e, karst, other): _	lone anticipated		According to
17) Does Propo directly overlyi				s Yes	No	V	
(a) If Yes, pro	vide Mine In	fo: Name:					
		Depth:					
		Seam:	570 - 410 - 1				
RECE Office of O	IVED	Owner:	_				

DEC 3 0 2013

WV Department of Environmental Protection Page 1 of 3

WW-6B (9/13)

18)

212.

CASING AND TUBING PROGRAM

TYPE	Size	New or Used	Grade	Weight per ft. (lb/ft)	FOOTAGE: For Drilling	INTERVALS: Left in Well	CEMENT: Fill-up (Cu. Ft.)
Conductor	20"	New	H-40	94#	40'	40'	CTS,38 Cu. Ft.
Fresh Water	13-3/8"	New	J-55/H-40	54.5#/ 48#	300'	300'	CTS, 417 Cu. Ft
Coal	9-5/8"	New	J-55	36#	2450'	2450'	CTS,998 Cu. Ft.
Intermediate							
Production	5-1/2"	New	P-110	20#	14600'	14600'	3623 Cu. Ft.
Tubing	2-3/8°	New	N-80	4.7#		7100'	
Liners							
	4						

TYPE Size Wellbore Wall **Burst Pressure** Cement Type Cement Yield (cu. ft./k) Diameter **Thickness** Conductor 20" 24" 0.438" 1530 Class A 1.18 Fresh Water 13-3/8" 17-1/2" 0.38"/0.33" 2730/1730 Class A 1.18 Coal 9-5/8" 12-1/4" 0.352" 3520 Class A 1.18 Intermediate Production 8-3/4" & 8-1/2" 5-1/2" 0.361" 12630 Lead-H/POZ & Tell - H H/POZ-1.44 & H-1.8 Tubing 2-3/8" 4.778" 0.19" 11200 Liners

PACKERS

Kind:	N/A	
Sizes:	N/A	
Depths Set:	N/A	

RECEIVED
Office of Oil and Gas

DEC 3 0 2013

WV Department of Environmental Protection Page 2 of 3

Page 3 of 3

19) Describe proposed wen work, including the drifting and plugging back of any pilot note:
Drill, perforate, fracture a new horizontal shallow well and complete Marcellus Shale.
20) Describe fracturing/stimulating methods in detail, including anticipated max pressure and max rate:
Antero plans to pump Slickwater into the Marcellus Shale formation in order to ready the well for production. The fluid will
be comprised of approximately 99 percent water and sand, with less than 1 percent special-purpose additives as shown in
the attached "List of Anticipated Additives Used for Fracturing or Stimulating Well."
21) Total Area to be disturbed including roads stocknile area nits etc. (agres). 23.32 acres
21) Total Area to be disturbed, including roads, stockpile area, pits, etc., (acres): 23.32 acres
22) Area to be disturbed for well pad only less access road (acres). 4.35 acres
22) Area to be disturbed for well pad only, less access road (acres): 4.35 acres
23) Describe centralizer placement for each casing string:
Conductor: no centralizers
Surface Casing: one centralizer 10' above the float shoe, one on the insert float collar and one every 4th joint spaced up the hole
to surface.
Intermediate Casing: one centralizer above float joint, one centralizer 5' above float collar and one every 4th collar to surface.
Production Casing: one centralizer at shoe joint and one every 3 joints to top of cement in intermediate casing.
24) Describe all accounts delicities according to the description of the second terms.
24) Describe all cement additives associated with each cement type: Conductor: no additives, Class A cement.
Surface: Class A cement with 2% calcium and 1/4 lb flake, 5 gallons of clay treat
Intermediate: Class A cement with 1/4 lb of flake, 5 gallons of clay treat
Production: Lead cement- 50/50 Class H/Poz + 1.5% salt + 1% C-45 + 0.5% C-16a + 0.2% C-12 + 0.45% C-20 + 0.05% C-51
Production: Tail cement- Class H + 45 PPS Calcium Carbonate + 1.0% FL-160 + 0.2% ACGB-47 + 0.05% ACSA-51 + 0.2% ACR-20
25) Proposed borehole conditioning procedures:
Conductor: blowhole clean with air, run casing, 10 bbls fresh water.
Surface: blowhole clean with air, trip to conductor shoe, trip to bottom, blowhole clean with air, trip out, run casing, circulate pige ty + 40 bbls
fresh water followed by 25 bbls bentonite mud, 10 bbls fresh water spacer.
intermediate: blowhole clean with air, trip to surface casing shoe, trip to bottom, blowhole clean with air, trip out, por casing, circulate 40 bbls brine water followed by 10 bbls fresh water and 25 bbls bentonite mud, pump 10 bbls fresh water.
CION:
sweep, trip to top of curve, trip to bottom, circulate, pump high viscosity sweep, trip out, run casing, circulate 10 bbls freet water, pump 48 bbls
barite pill, pump 10 bbls fresh water followed by 48 bbls mud flush and 10 bbls water.
Production: circulate with 14 lb/gal NaCl mud, trip to middle of lateral, circulate, pump high viscosity sweep, trip to base of curve, pump high viscosity sweep, trip to top of curve, trip to bottom, circulate, pump high viscosity sweep, trip out, run casing, circulate 10 bbls fresh water, pump 48 bbls barite pill, pump 10 bbls fresh water followed by 48 bbls mud flush and 10 bbls water. *Note: Attach additional sheets as needed.
*Note: Attach additional sheets as needed.
Trote. Attach additional spects as needed.

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION 4701706418 OFFICE OF OIL AND GAS

FLUIDS/ CUTTINGS DISPOSAL & RECLAMATION PLAN

Operator Name_ Antero Resource	es Corporation	OP Code 494488557
Watershed (HUC 10)_Meathou	se Fork Qu	andrangle New Milton
Elevation 1081'	County_Doddridge	District New Milton
Do you anticipate using more the Will a pit be used? Yes	nan 5,000 bbls of water to complete the	proposed well work? Yes No
If so, please describe a	Introspeted pit waste.	(Offiling and Flowback Fluids will be stored in tanks. Cuttings will be tanked and hauled off site.)
Will a synthetic liner b		✓ If so, what ml.? N/A
1 171	thod For Treated Pit Wastes:	
	Application preground Injection (UIC Permit Number	· ·
	-	tions when applicable. API# will be provided on Form WR-34
	ite Disposal (Supply form WW-9 for d	isposal location) (Meadowfill Landfill Permit #SWF-1032-98)
Will closed loop system be used	? If so, describe: Yes	
Drilling medium anticipated for	this well (vertical and horizontal)? Air	, freshwater, oil based, etc. DukUStiff Foem, Production - Water Based Mud
-If oil based, what type	? Synthetic, petroleum, etc. N/A	
Additives to be used in drilling i	medium? Please See Attachment	
	and the second transfer of the second to	etc. Stored in tanks, removed offsite and taken to landfill.
	o solidify what medium will be used? (
	ne/permit number? Meadowfill Landfill (Per	
on August 1, 2005, by the Office provisions of the permit are enflaw or regulation can lead to enform a lead to enform and all attack obtaining the information, I be penalties for submitting false information of Company Official Signature Company Official (Typed Name)	e of Oil and Gas of the West Virginia D forceable by law. Violations of any ter forcement action. To flaw that I have personally examin ments thereto and that, based on my dieve that the information is true, accommanding the possibility of fi	so of the GENERAL WATER POLLUTION PERMIT issued epartment of Environmental Protection. I understand that the m or condition of the general permit and/or other applicable and am familiar with the information submitted on this ringuiry of those individuals improved by responsible for urate, and complete. I am practical there are significant the or imprisonment.
	1 0-1	A September 1
Subscribed and sworn before me	this 4 day of OCE	Notary Public State of Colorado Notary ID 20124072365 My Commission Expires Nov 9, 2016

Form WW-9		Operator's We	Dufflemeyer Unit 1
Antero Resources Co	orporation	Optimited III	
Proposed Revegetation Treatment	: Acres Disturbed 23.32	Prevegetation pH	
2.2	Tons/acre or to correct to pl	6.5	
Fertilizer type Hay or stra	w or Wood Fiber (will be used	where needed)	
Fertilizer amount 500		bs/acre	
Mulch 2-3	Tons	acre	
	(1.66) + New Well Pad (4.35) + New V	Vater Containment Pad (4.10) + New Excess/Topsoil M	Interial Stockpiles (8.42) = 23,32 New Ac
	See	d Mixtures	
Tempo	rary	Perman	ent
Seed Type	lbs/acre	Seed Type	lbs/acre
Annual Ryegrass	40	Crownvetch	10-15
"See attached Table 3 for additional seed type (Snake Run Ped Design Page 19)	*See attached Table 4a for additional seed type	(Snako Run Pad Design Page 19)
or type of grass seed reques	ted by surface owner	*or type of grass seed reques	ted by surface owner
NOTE: No Fescue or T	imothy Grass shall I	oe used.	
Plan Approved by:	las Newlon	- Mic	had Jaff
Comments: Preseed	1 + Molch	Install Ets	to we dep
regulations			
Contact insp	ector pero	re construtio	n bes me
01 601010	1009 DILLE	<i>a</i>	
	enspector D	Date: 12-30-20	2/7
Office of Oil and Ga	s		
DEC 3 0 2013			

WV Department of Environmental Protection

Form WW-9 Additives Attachment

SURFACE INTERVAL

- 1. Fresh Water
- Soap –Foamer AC
- 3. Air

INTERMEDIATE INTERVAL

STIFF FOAM RECIPE:

- 1) 1 ppb Soda Ash / Sodium Carbonate-Alkalinity Control Agent
- 2) 1 ppb Conqor 404 (11.76 ppg) / Corrosion Inhibitor
- 3) 4 ppb KLA-Gard (9.17 ppg) / Amine Acid Complex-Shale Stabilizer
- 1ppb Mil Pac R / Sodium Carboxymethylcellulose-Filtration Control Agent
- 5) 12 ppb KCL / Potassium Chloride-inorganic Salt
- 6) Fresh Water 80 bbls
- 7) Air

PRODUCTION INTERVAL

- 1. Alpha 1655
 - Salt Inhibitor
- 2. Mil-Carb
 - Calcium Carbonate
- Cottonseed Hulls
 - Cellulose-Cottonseed Pellets LCM
- 4. Mil-Seal
 - Vegetable, Cotton & Cellulose-Based Fiber Blend LCM
- Clay-Trol
 - Amine Acid Complex Shale Stabilizer
- 6. Xan-Plex
 - Viscosifier For Water Based Muds
- Mil-Pac (All Grades)
 - Sodium Carboxymethylcellulose Filtration Control Agent
- New Drill
 - Anionic Polyacrylamide Copolymer Emulsion Shale Stabilizer
- Caustic Soda
 - Sodium Hydroxide Alkalinity Control
- 10. Mil-Lime
 - Calcium Hydroxide Lime
- 11. LD-9
- Polyether Polyol Drilling Fluid Defoamer
- 12. Mil Mica
 - Hydro-Biotite Mica LCM

13. Escaid 110

Drilling Fluild Solvent - Aliphatic Hydrocarbon

14. Ligco

Highly Oxidized Leonardite - Filteration Control Agent

15. Super Sweep

Polypropylene - Hole Cleaning Agent

16. Sulfatrol K

Drilling Fluid Additive - Sulfonated Asphalt Residuum

17. Sodium Chloride, Anhydrous

Inorganic Salt

18. D-D

Drilling Detergent - Surfactant

19. Terra-Rate

Organic Surfactant Blend

20. W.O. Defoam

Alcohol-Based Defoamer

21. Perma-Lose HT

Fluid Loss Reducer For Water-Based Muds

22. Xan-Plex D

Polysaccharide Polymer - Drilling Fluid Viscosifier

Walnut Shells

Ground Cellulosic Material - Ground Walnut Shells - LCM

24. Mil-Graphite

Natural Graphite - LCM

25. Mil Bar

Barite - Weighting Agent

26. X-Cide 102

Biocide

27. Soda Ash

Sodium Carbonate - Alkalinity Control Agent

28. Clay Trol

Amine Acid complex - Shale Stabilizer

29. Sulfatrol

Sulfonated Asphalt - Shale Control Additive

30. Xanvis

Viscosifier For Water-Based Muds

31. Milstarch

Starch - Fluid Loss Reducer For Water Based Muds

32. Mil-Lube

Drilling Fluid Lubricant

RECEIVED Office of Oil & Gas

NOV 22 2013

WV Department of Environmental Protection

Well Site Safety Plan Antero Resources

Well Name: Dufflemeyer Unit 1H, Dufflemeyer Unit 2H,

Honey Unit 1H, Honey Unit 2H, Asena Unit 1H,

Asena Unit 2H

Pad Location: Snake Run Pad

Doddridge County/ New Milton District

GPS Coordinates: Lat 39°12'17.52"/Long -80°39'3.68" (NAD83)

Driving Directions:

From New Milton:

Head SW on CO Route 25/ Meathouse Fork Rd. for 3.8 miles until past the intersection with CO Route 25/8 Snake Run Branch. Access Road will be on left.

RECEIVED
Office of Oil and Gas

DEC 3 0 2013

WV Department of Environmental Protection DCW 2013

west virginia department of environmental protection

Water Management Plan: Primary Water Sources

WMP-01679

API/ID Number:

047-017-06418

Operator:

Antero Resources

Dufflemeyer Unit 1H

Important:

For each proposed primary water source (including source intakes for purchased water sources) identified in your water management plan, and summarized herein, DEP has made an evaluation concerning water availability over the specified date range. DEP's assessment is based on the following considerations:

- Statistical analysis of historical USGS stream gauge data (transferred to un-gauged locations as necessary);
- ·Identification of sensitive aquatic life (endangered species, mussels, etc.);
- ·Quantification of known existing demands on the water supply (Large Quantity Users);
- Minimum flows required by the Army Corps of Engineers; and
- Designated stream uses.

Based on these factors, DEP has provided, for each intake location (and origination point for purchased water), a reference gauge location and discharge flow reading which must be surpassed prior to withdrawals. Additionally, DEP has established a minimum passby flow at the withdrawal location which must also be surpassed prior to withdrawals. These thresholds are considered terms of the permit and are enforceable as such.

DEP is aware that some intake points will be used for mutiple wells and well sites. In these cases, the thresholds set by the Water Management Plan are to be interepreted as total withdrawal limits for each location over the specified date range regardless of how many wells are supported by that intake.

For all purchased water intakes, determinations of water availability are made at the original source intake location. It is the responsibility of the Oil and Gas Operator, not the seller, to cease withdrawal of water from the seller when flows are less than the minimum gauge reading at the stream gauge referenced by the Water Management Plan in order to protect stream uses.

Note that the determinations made herein are based on the best available data, but it is impossible to predict water availability in the future. While the DEP has carefully established these minimum withdrawal thresholds, it remains the operator's responsibility to protect aquatic life at all times. Approval to withdrawal is contingent upon permission from the land owner. It is the responsibility of the operator to secure and maintain permission prior to any withdrawals.

The operator is reminded that 24-48 hours prior to withdrawing (or purchasing) water, DEP must be notified by email at DEP.water.use@wv.gov.

Source Summary

WMP-01679

APi Number:

047-017-06418

Operator:

Antero Resources

Dufflemeyer Unit 1H

Stream/River

Source

Ohio River @ Ben's Run Withdrawal Site

Tyler

Owner:

Ben's Run Land Company

Limited Partnership

Start Date

End Date

Total Volume (gal) Max. daily purchase (gal)

Intake Latitude: Intake Longitude: 39.46593

-81.110781

8/29/2013

8/29/2014

7,210,000

9999999

✓ Regulated Stream?

Ohio River Min. Flow Ref. Gauge ID:

Ohio River Station: Willow Island Lock & Dam

Max. Pump rate (gpm):

3,360

Min. Gauge Reading (cfs):

6,468.00

Min. Passby (cfs)

DEP Comments:

Refer to the specified station on the National Weather Service's Ohio River forecast website: http://www.erh.noaa.gov/ohrfc//flows.shtml

Source

West Fork River @ JCP Withdrawal

Harrison

Owner:

James & Brenda Raines

Start Date

End Date

Total Volume (gal)

Max. daily purchase (gal)

Intake Latitude: Intake Longitude: 39.320913

-80.337572

8/29/2013

8/29/2014

7,210,000

3061000

WEST FORK RIVER AT ENTERPRISE, WV

Max. Pump rate (gpm):

2,000

☑ Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID:

Min. Gauge Reading (cfs):

175.00

Min. Passby (cfs)

146.25

DEP Comments:

Source

West Fork River @ McDonald Withdrawal

Harrison

Owner:

David Shrieves

Start Date

End Date

Total Volume (gal) 7,210,000

Max. daily purchase (gal)

Intake Latitude: Intake Longitude: -80.45069

8/29/2013

8/29/2014

3061000

WEST FORK RIVER AT ENTERPRISE, WV

39.16761

Max. Pump rate (gpm):

3,000

Regulated Stream? Stonewall Jackson Dam Ref. Gauge ID:

Min. Gauge Reading (cfs):

175.00

Min. Passby (cfs)

106.30

DEP Comments:

Source	West Fork Riv	er @ GAL W	ithdrawal		Harrison	Owner:	David Shrieves
Start Date 8/29/2013			Total Volume (gal) 7,210,000	Max. daily p	urchase (gal)	Intake Latitude: 39.16422	Intake Longitude: -80.45173
✓ Regulate	ed Stream? Stor	newall Jackso	on Dam Ref. Gauge ID	306100	0	WEST FORK RIVER AT ENTE	RPRISE, WV
Max. Pump	DEP Comme	2,000 ents:	Min. Gauge Readi	ng (cfs):	175.00	Min. Passby (cf	(s) 106.30
o Source	Middle Island	Creek @ Me	ees Withdrawal Site		Pleasants	Owner:	Sarah E. Mees
Start Date 8/29/2013			Total Volume (gal) 7,210,000	Max. daily p	urchase (gal)	Intake Latitude: 39.43113	Intake Longitude: -81.079567
Regulate	d Stream?		Ref. Gauge ID	311450	0	MIDDLE ISLAND CREEK AT	LITTLE, WV
Max. Pump	prate (gpm): DEP Comme	3,360 ents:	Min. Gauge Readi	ng (cfs):	52.59	Min. Passby (cí	(s) 47.63
Source	Middle Island	Creek @ Da	wson Withdrawal		Tyler	Owner: Ga	ery D. and Rella A. Dawson
Start Date 8/29/2013			Total Volume (gal) 7,210,000	Max. daily pu	urchase (gal)	Intake Latitude: 39.379292	Intake Longitude: -80.867803
Regulated	d Stream?		Ref. Gauge ID	311450	0	MIDDLE ISLAND CREEK AT	LITTLE, WV
Max. Pump	rate (gpm):	3,000	Min. Gauge Readi	ng (cfs):	76.03	Min. Passby (cf	s) 28.83
	DEP Comme	nts:					

Source	McElroy Creek	@ Forest	Withdrawal		Tyler	Owner:	Forest C. & Brenda L. Moore
Start Date 8/29/2013			Total Volume (gal) 7,210,000	Max. daily p	urchase (gal)	Intake Latitud 39.39675	e: Intake Longitude -80.738197
Regulated	d Stream?		Ref. Gauge	ID: 3114 50	00	MIDDLE ISLAND CREEK	AT LITTLE, WV
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ding (cfs):	74.77	Min. Passby	(cfs) 13.10
	DEP Comme	nts:					
Source	Meathouse Fo	rk @ Gagn	on Withdrawal		Doddridge	Owner: G	eorge L. Gagnon and Susan C. Gagnon
Start Date 8/29/2013			Total Volume (gal) 7,210,000	Max. daily p	urchase (gal)	Intake Latitud 39.26054	e: Intake Longitude -80.720998
Regulated	d Stream?		Ref. Gauge	ID: 311450	00	MIDDLE ISLAND CREEK	AT LITTLE, WV
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ding (cfs):	71.96	Min. Passby	(cfs) 11.74
	DEP Comme	nts:					
Source	Meathouse Fo	rk @ Whit	ehair Withdrawal		Doddridge	Owner:	Elton Whitehair
Start Date 8/29/2013			Total Volume (gal) 7,210,000	Max. daily p	urchase (gal)	Intake Latitude 39.211317	e: Intake Longitude: -80.679592
Regulated	d Stream?		Ref. Gauge	D: 31145 0	00	MIDDLE ISLAND CREEK	AT LITTLE, WV
Max. Pump	rate (gpm): DEP Comme	1,000 nts:	Min. Gauge Read	ding (cfs):	69.73	Min. Passby	(cfs) 7.28
		1					

Source Arnold Creek @ Davis Withdrawal Doddridge Owner: Jonathon Davidge Start Date End Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 39.302006 -80.824561 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.0 DEP Comments: Source Buckeye Creek @ Powell Withdrawal Doddridge Owner: Dennis Power Start Date End Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386	o Source	iom's Fork @	CLANILI AAICI	lurawai		Doddridge	Owner: John F.	Erwin and Sandra E Erwi
Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 0.5 DEP Comments: Start Date End Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitud 39.302006 -80.824561 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.0 DEP Comments: Source Buckeye Creek Powell Withdrawal Doddridge Owner: Dennis Power Start Date End Date 8/29/2013 8/29/2014 7,210,000 Jay.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.55 Min. Passby (cfs) 4.55					Max. daily p	ourchase (gal)		
Source Amold Creek @ Davis Withdrawal Doddridge Owner: Jonathon Davis R/29/2013 8/29/2014 7,210,000 1ntake Latitude: Intake Longitud 39,302006 80,824561 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.00 DEP Comments: Source Buckeye Creek @ Powell Withdrawal Doddridge Owner: Dennis Power Start Date End Date 7,210,000 39,277142 8/29/2013 8/29/2014 7,210,000 39,277142 80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	☐ Regulated	d Stream?		Ref. Gauge I	D: 31145	00	MIDDLE ISLAND CREEK	AT LITTLE, WV
Source Arnold Creek @ Davis Withdrawal Doddridge Owner: Jonathon Davis Withdrawal B/29/2013 8/29/2014 7,210,000 Mix. daily purchase (gal) Intake Latitude: Intake Longitud 39.302006 -80.824561 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.00 DEP Comments: Source Buckeye Creek @ Powell Withdrawal Doddridge Owner: Dennis Power Start Date End Date 7,210,000 Max. daily purchase (gal) Intake Latitude: Intake Longitud 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	69.73	Min. Passby	(cfs) 0.59
Start Date End Date 8/29/2013 8/29/2014 7,210,000 39.302006 -80.824561 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.00 DEP Comments: Start Date End Date 8/29/2013 8/29/2014 7,210,000 Max. daily purchase (gal) intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 Max. daily purchase (gal) intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 Min. Gauge Reading (cfs): 69.73 MidDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5		DEP Comme	nts:					
8/29/2013 8/29/2014 7,210,000 39.302006 -80.824561 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.0 DEP Comments: Dennis Power Start Date End Date 8/29/2013 Total Volume (gal) Max. daily purchase (gal) intake Latitude: Intake Longitude 8/29/2013 Intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	Source	Arnold Creek @	Davis Wi	thdrawal		Doddridge	Owner:	Jonathon Davi
Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 3.0 DEP Comments: Source Buckeye Creek @ Powell Withdrawal Doddridge Owner: Dennis Powell Start Date End Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5					Max. daily p	urchase (gal)		
DEP Comments: Source Buckeye Creek @ Powell Withdrawal Doddridge Owner: Dennis Power Start Date End Date Total Volume (gal) Max. daily purchase (gal) intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	Regulated	Stream?		Ref. Gauge I	D: 31145 0	00	MIDDLE ISLAND CREEK	AT LITTLE, WV
Source Buckeye Creek @ Powell Withdrawal Doddridge Owner: Dennis Powell Start Date End Date Total Volume (gal) Max. daily purchase (gal) intake Latitude: Intake Longitude 8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ing (cfs):	69.73	Min. Passby ((cfs) 3.08
8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	Source			Withdrawal		Doddridge	Owner:	Dennis Powel
8/29/2013 8/29/2014 7,210,000 39.277142 -80.690386 Regulated Stream? Ref. Gauge ID: 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	Start Date	End Date		Total Volume (gal)	Max. daily p	urchase (gal)	intake Latitude	: Intake Longitude
Max. Pump rate (gpm): 1,000 Min. Gauge Reading (cfs): 69.73 Min. Passby (cfs) 4.5	8/29/2013	8/29/2014		7,210,000				
	Regulated	Stream?		Ref. Gauge II	311450	00	MIDDLE ISLAND CREEK A	T LITTLE, WV
DEP Comments:	Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ing (cfs):	69.73	Min. Passby (c(s) 4.59
		DEP Commer	its:					

5 Jource	30ddii 70ik oi	riugiies Kiv	er er kingir vitildiav	· di	Rittine	Owner.		e C. Knight
Start Date 8/29/2013	End Date 8/29/2014		Total Volume (gal) 7,210,000	Max. daily pur	chase (gal)	Intake Lati 39.1983		Longitude: .870969
☐ Regulated	Stream?		Ref. Gauge I	D: 3155220	OUTH FO	RK HUGHES RIVER	BELOW MACE	ARLAN, W\
Max. Pump	rate (gpm):	3,000	Min. Gauge Read	ding (cfs):	39.80	Min. Pass	by (cfs)	1.95
	DEP Comme							
Source	North Fork of	Hughes Riv	er @ Davis Withdrawa	at	Ritchie	Owner: Le	wis P. Davis a	nd Norma J. Davis
Start Date	End Date		Total Volume (gal)	Max. daily pur	chase (gal)	Intake Lati		Longitude:
8/29/2013	8/29/2014		7,210,000			39.3223	63 -80.	936771
Regulated	Stream?		Ref. Gauge I	D: 3155220	OUTH FO	RK HUGHES RIVER	BELOW MACF	ARLAN, W\
Max. Pump	rate (gpm):	1,000	Min. Gauge Read	ling (cfs):	35.23	Min. Pass	by (cfs)	2.19
	DEP Comme	nts:						

Source Summary

WMP-01679 API Number: 047-017-06418 Operator: Antero Resources

Dufflemeyer Unit 1H

Purchased Water

✓ Regulated Stream?

Source Ohio River @ Select Energy Pleasants Owner: Select Energy

 Start Date
 End Date
 Total Volume (gal)
 Max. daily purchase (gal)
 Intake Latitude:
 Intake Longitude:

 8/29/2013
 8/29/2014
 7,210,000
 500,000
 39,346473
 -81.338727

✓ Regulated Stream? Ohio River Min. Flow Ref. Gauge ID: 9999998 Ohio River Station: Racine Dam

Max. Pump rate (gpm): 1,680 Min. Gauge Reading (cfs): 7,216.00 Min. Passby (cfs)

DEP Comments: Refer to the specified station on the National Weather Service's Ohio River forecast

website: http://www.erh.noaa.gov/ohrfc//flows.shtml

Ohio River Min. Flow Ref. Gauge ID:

Source Middle Island Creek @ Solo Construction Pleasants Owner: Solo Construction, LLC

 Start Date
 End Date
 Total Volume (gal)
 Max. daily purchase (gal)
 Intake Latitude:
 Intake Longitude:

 8/29/2013
 8/29/2014
 7,210,000
 1,000,000
 39.399094
 -81.185548

Max. Pump rate (gpm): Min. Gauge Reading (cfs): 6,468.00 Min. Passby (cfs)

DEP Comments: Elevation analysis indicates that this location has the same elevation as Middle Island

9999999

Creek's pour point into the Ohio River. As such, it is deemed that water flow at this

location is heavily influenced by the Ohio River.

Source Claywood Park PSD Wood Owner: Claywood Park PSD

Start Date End Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude:

8/29/2013 8/29/2014 7,210,000 -

Regulated Stream? Ref. Gauge ID: 9999998 Ohio River Station: Racine Dam

Max. Pump rate (gpm): Min. Gauge Reading (cis): 7,216.00 Min. Passby (cfs)

DEP Comments: Elevation analysis indicates that this location has approximately the same elevation as Little Kanawha's pour point into the Ohio River. As such, it is deemed that water flow

at this location is heavily influenced by the Ohio River.

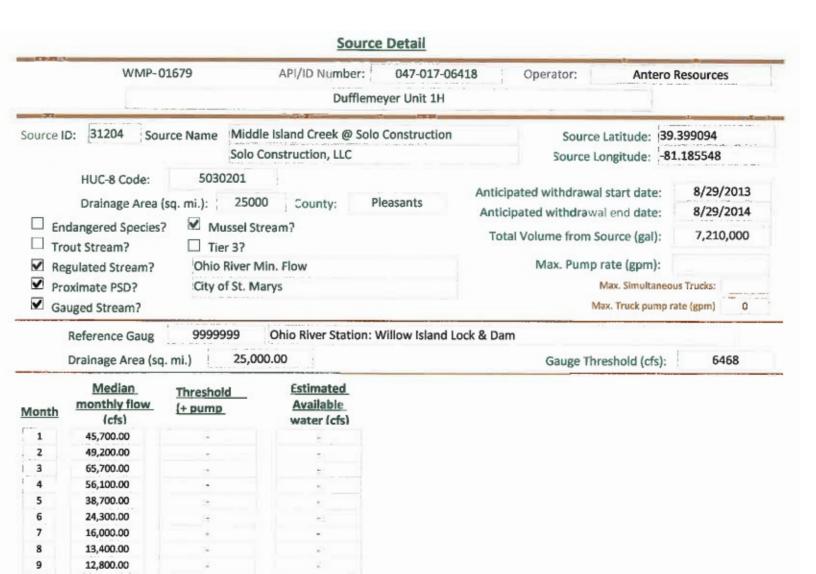
Ohio River Station: Willow Island Lock & Dam

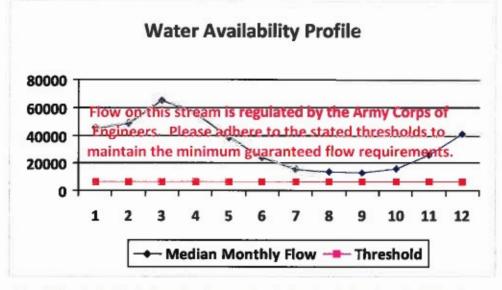
Source Sun Valley Public Service District Harrison Owner: Sun Valley PSD

Start Date End Date Total Volume (gal) Max. daily purchase (gal) Intake Latitude: Intake Longitude: 8/29/2013 8/29/2014 7,210,000 200,000 - - - -

Min. Gauge Reading (cfs): 171.48

Min. Passby (cfs)


DEP Comments:

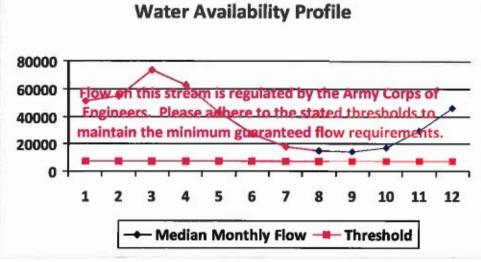

Max. Pump rate (gpm):

31203 Sou JC-8 Code: ainage Area (ered Species?	Select 5030201	Dufflemeyer Unit River @ Select Energy Energy	1H	Source Latitude: 39.3	45472
JC-8 Code: ainage Area (Select 5030201	Continued to the court and appeared the		Source Latitude: 39.3	46470
ainage Area (5030201	Energy			464/3
ainage Area (Source Longitude: -81.3	338727
	ca mi l- 2500				- 100 100 10
arad Spacias?	sq. IIII.). 2500	O County: Pleasants		ited withdrawal start date:	8/29/2013
	✓ Mussel Str	ream?	Anticip	ated withdrawal end date:	8/29/2014
ream?	☐ Tier 3?	Calli	Tota	Volume from Source (gal):	7,210,000
	g	lin. Flow		Max. Pump rate (gpm):	1,680
	**				Trucks:
			i i		
	0000000	Ohio Pivor Station, Pasino Do			
			m	89 27 9 119 29 11	
nage Area (sq.	. mi.) 25,00	0.00		Gauge Threshold (cfs):	7216
nthly flow	Threshold (+ pump	Estimated Available			
		water (cts)			
CONTRACTOR OF THE PARTY OF THE					
3,256.00	*				
2,552.00	9				
3,151.00	2	14			
7,095.00	#				
	2	3			
		151			
and the second	Ž-1				
	-	1.5			
	ed Stream? ste PSD? Stream? rence Gaug nage Area (sq. Median nthly flow (cfs) 0,956.00 0,858.00 0,256.00 0,552.00 0,151.00	ed Stream? te PSD? Stream? rence Gaug	Ohio River Min. Flow	Ohio River Min. Flow Stream? Stream? Pence Gaug 9999998 Ohio River Station: Racine Dam Page Area (sq. mi.) 25,000.00 Median Threshold (+ pump Available water (cfs) 1,0956.00 1,2552.00 1,151.00 1,095.00 1,840.00 1,941.00 1,272.00 1,283.00 1,325.00	Max. Pump rate (gpm): Max. Simultaneous Max. Simultaneous Max. Truck pump rate M

◆ Median Monthly Flow ◆ Threshold

Passby at Location (cfs):

Base Threshold (cfs):	-
Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	0.00
Pump rate (cfs):	
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	


10

11

15,500.00 26,300.00

41,300.00

Antero Resources Latitude: Ingitude: I end date: 8/29/20 I end date: 8/29/20 I end date: 7,210,00 I ate (gpm): I dax. Simultaneous Trucks: Ix. Truck pump rate (gpm) I eshold (cfs): 7216
start date: 8/29/20 lend date: 8/29/20 purce (gal): 7,210,00 ate (gpm): Max. Simultaneous Trucks: x. Truck pump rate (gpm)
start date: 8/29/20 lend date: 8/29/20 purce (gal): 7,210,00 ate (gpm): Max. Simultaneous Trucks: x. Truck pump rate (gpm)
start date: 8/29/20 l end date: 8/29/20 ource (gal): 7,210,00 ate (gpm): tax. Simultaneous Trucks: x. Truck pump rate (gpm)
start date: 8/29/20 l end date: 8/29/20 ource (gal): 7,210,00 ate (gpm): tax. Simultaneous Trucks: x. Truck pump rate (gpm)
end date: 8/29/20 purce (gal): 7,210,00 ate (gpm): fax. Simultaneous Trucks: x. Truck pump rate (gpm)
ate (gpm): Aax. Simultaneous Trucks: x. Truck pump rate (gpm)
ate (gpm): flax. Simultaneous Trucks: x. Truck pump rate (gpm)
ate (gpm): flax. Simultaneous Trucks: x. Truck pump rate (gpm)
Max. Simultaneous Trucks: x. Truck pump rate (gpm)
x. Truck pump rate (gpm)
pility

Base Threshold (cfs):	-
Upstream Demand (cfs):	0.00
Downstream Demand (cfs):	0.00
Pump rate (cfs):	
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	_

			Source Detail			
	WMP-0	01679	API/ID Number: 047-017-		Resources	
Source II	D: 31206 Sou	urce Name Sun Va	Source Latitude:			
☐ Tro			Anticipated withdrawal start date: Anticipated withdrawal end date: Total Volume from Source (gal): Max. Pump rate (gpm):	8/29/2013 8/29/2014 7,210,000		
	oximate PSD? uged Stream?			Max. Simultaneous Trucks: Max. Truck pump rate (gpm)		
Drainage Area (sq. mi.) 759.00 Median Threshold Estimated				Gauge Threshold (cfs):	234	
Month	monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)			
1	1,200.75		17			
2	1,351.92		85.0			
3	1,741.33					
4	995.89					
5	1,022.23	*				
7	512.21 331.86	*				
8	316.87	20				
9	220.48					
10	216.17	=	4			
11	542.45	20	2			
12	926.12	5	- 5			
Water Availability Profile				Water Availability Assessm Base Threshold (cfs):	ent of Location	
2000	-			Upstream Demand (cfs):		
1500				Downstream Demand (cfs)		
1500			ulated by the Army Corps o	T .		
1000	Engineers	_Please_adbere	to the stated thresholds to	Pump rate (cfs):		

10

11

9

12

maintain the minimum guaranteed flow requirements

7

Median Monthly Flow — Threshold

5

500

1

2

3

0.00

0.00

Headwater Safety (cfs):

Ungauged Stream Safety (cfs):

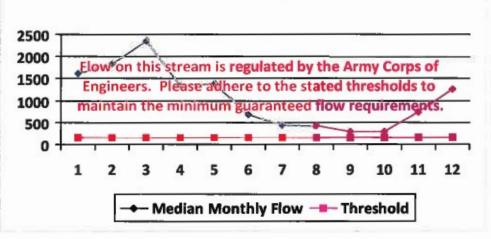
Min. Gauge Reading (cfs):

Passby at Location (cfs):

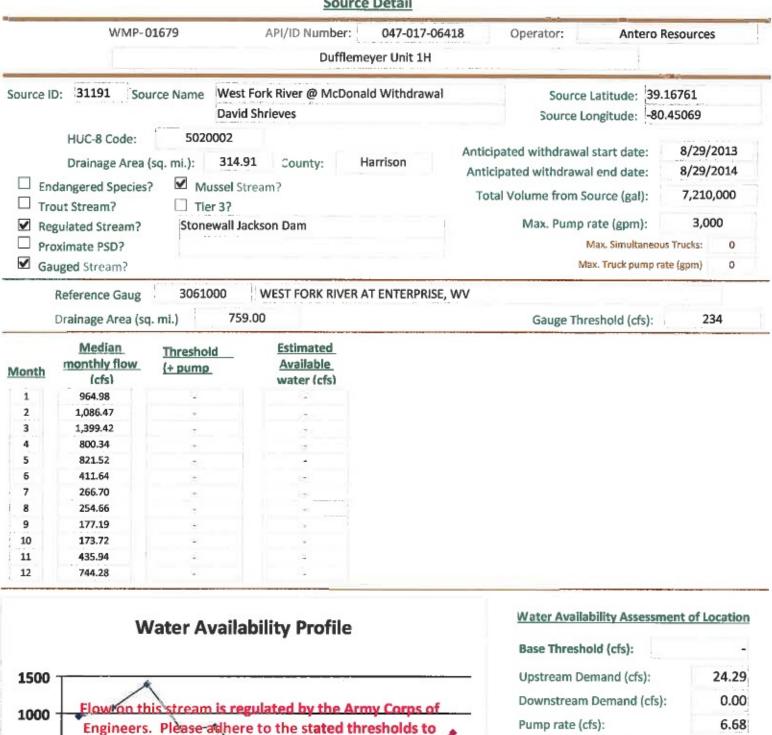
	WMP-0	1679	API/ID Number:	047-017-064	18 Operator:	Antero	Resources
			Dufflen	neyer Unit 1H			
Source I	D: 31189 Sou	irce Name	Ohio River @ Ben's Run W	/ithdrawal Site	So	urce Latitude: 39.	46593
		50	Ben's Run Land Company I	Limited Partnersh	nip Sour	ce Longitude: -81	.110781
HUC-8 Code: 5030201							
			Tiday	Anticipated withdrawal start date:	8/29/2013		
	Drainage Area	20	25000 County:	Tyler	Anticipated withd	rawal end date:	8/29/2014
☐ Endangered Species? ☑ Mussel Stream? ☐ Trout Stream? ☐ Tier 3?			Total Volume from Source (gal):	7,210,000			
✓ Re	7 · · · · · · · · · · · · · · · · · · ·			Max. Pu	mp rate (gpm):	3,360	
☐ Proximate PSD? ☐ Gauged Stream?					Max. Simultaneou	ıs Trucks: 0	
					Max. Truck pump ra		
	Drainage Area (co	mi \	25,000,00		Cause	Throshold (efc)	6468
	Drainage Area (sq Median		25,000.00 Estimated		Gauge	Threshold (cfs):	6468
vionth	Median monthly flow (cfs)	Threshold	Estimated Available		Gauge	Threshold (cfs):	6468
Month 1	Median monthly flow	Threshold	Estimated		Gauge	Threshold (cfs):	6468
	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
1	Median monthly flow (cfs) 45,700.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
1 2	Median monthly flow (cfs) 45,700.00 49,200.00 65,700.00 56,100.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
1 2 3 4 5	Median monthly flow (cfs) 45,700.00 49,200.00 65,700.00 56,100.00 38,700.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
1 2 3 4 5	Median monthly flow (cfs) 45,700.00 49,200.00 65,700.00 56,100.00 38,700.00 24,300.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
1 2 3 4 5 6	Median monthly flow (cfs) 45,700.00 49,200.00 65,700.00 56,100.00 38,700.00 24,300.00 16,000.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
1 2 3 4 5 6 7	Median monthly flow (cfs) 45,700.00 49,200.00 65,700.00 56,100.00 24,300.00 16,000.00 13,400.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468
2 3 4 5 6 7	Median monthly flow (cfs) 45,700.00 49,200.00 65,700.00 56,100.00 38,700.00 24,300.00 16,000.00	Threshold (+ pump	Estimated Available		Gauge	Threshold (cfs):	6468

Water Availability Profile Flow op this stream is regulated by the Army Corps of Ingineers. Please adhere to the stated thresholds to maintain the minimum guaranteed flow requirements. 1 2 3 4 5 6 7 8 9 10 11 12


Median Monthly Flow -- Threshold


Water Availability Assessment of Location Base Threshold (cfs): Upstream Demand (cfs): Downstream Demand (cfs): Pump rate (cfs): Headwater Safety (cfs): Ungauged Stream Safety (cfs): O.00 Min. Gauge Reading (cfs): Passby at Location (cfs):

"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.


12

41,300.00

Base Threshold (cfs):	-
Upstream Demand (cfs):	24.29
Downstream Demand (cfs):	0.00
Pump rate (cfs):	4.46
Headwater Safety (cfs):	0.00
Ungauged Stream Safety (cfs):	0.00
Min. Gauge Reading (cfs):	
Passby at Location (cfs):	

"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

Threshold

10

11

12

ranteed flow-requirements

2

5

Median Monthly Flow

6

500

0

24.27

0.00

Headwater Safety (cfs):

Ungauged Stream Safety (cfs):

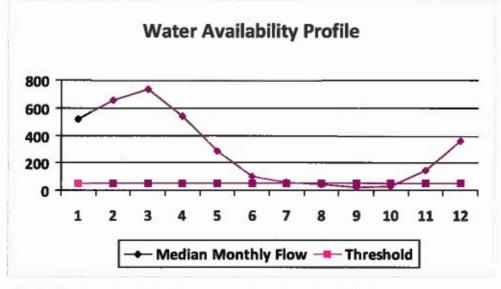
Min. Gauge Reading (cfs): Passby at Location (cfs):

	_		Source Detail		
	WMP-0	1679	API/ID Number: 047-0 Dufflemeyer Unit	17-06418 Operator: Antero Resou	rces
Source II	D: 31192 Sou	ALC: 40.000	Fork River @ GAL Withdrawal	Source Latitude: 39.1642	V-1
☐ Tro ☑ Reg	HUC-8 Code: Drainage Area (dangered Species) out Stream? gulated Stream? oximate PSD? uged Stream?	_	tream?	Anticipated withdrawal start date: 8/ Anticipated withdrawal end date: 8/ Total Volume from Source (gal): 7,	29/2013 29/2014 210,000 2,000
	Reference Gaug Drainage Area (sq	3061000 . mi.) 75	9.00	PRISE, WV Gauge Threshold (cfs):	234
Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)		
1	961.18	2			
2	1,082.19	-	Carlotte Control		
3	1,393.91				
4	797.19 818.28	= =	1.5		
6	410.02				
7	265.65				
8	253.65	- 3			
9	176.49	2	997		
10	173.04	2			
11	434.22	2			
12	741.35	-		Water Availability Assessment	of Location
	W	/ater Availa	bility Profile	Truck Availability Assessment	. Location
				Base Threshold (cfs):	-
1500				Upstream Demand (cfs):	24.20
	1500			24.29	
		is stroam is an	gulated by the Army Corr	Downstream Demand (cfs):	0.00
1000	Elow on th	1	gulated by the Army Corp	S_OT	
1000 500	Elow on the	. Please adher	gulated by the Army Corp e to the stated threshold waranteed flow requirem	s to Pump rate (cfs):	0.00

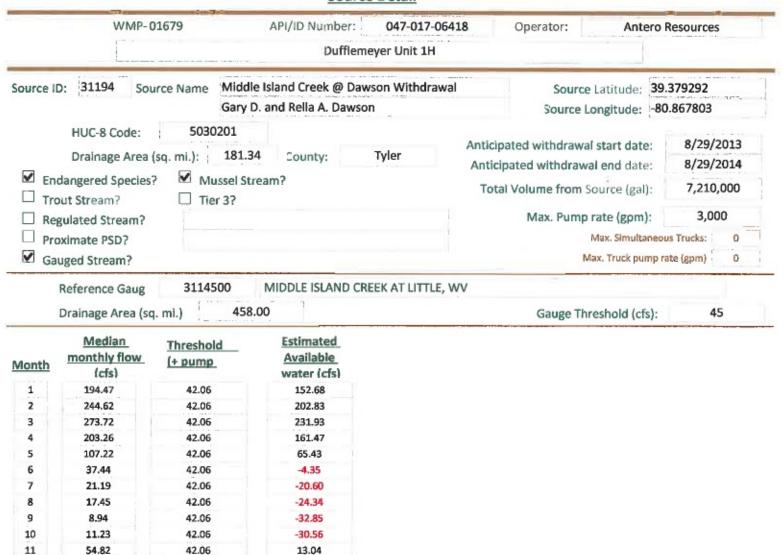
10

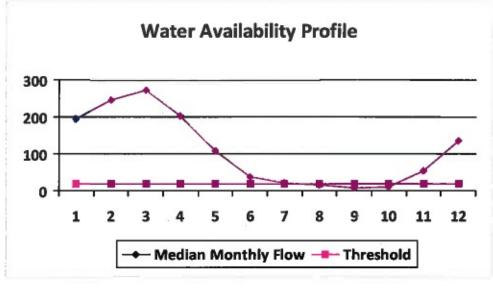
11 12

9


6

Median Monthly Flow — Threshold


Min. Gauge Reading (cfs): Passby at Location (cfs):



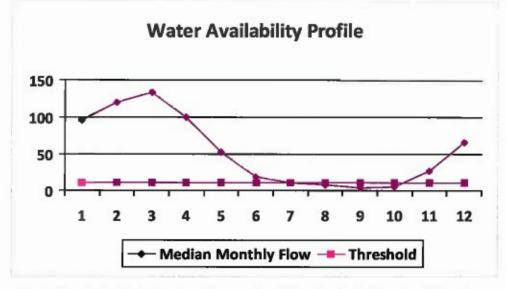
Month	Median monthly flow (cfs)	Threshold (+ pump	Available water (cfs)
1	519.88	55.12	465.14
2	653.95	55.12	599.22
3	731.75	55.12	677.01
4	543.38	55.12	488.65
5	286.64	55.12	231.90
6	100.10	55.12	45.36
7	56.65	55.12	1.91
8	46.64	55.12	-8.10
9	23.89	55.12	-30.85
10	30.01	55.12	-24.72
11	146.56	55.12	91.83
12	358.10	55.12	303.37

Min. Gauge Reading (cfs): Passby at Location (cfs):	52.49 47.63
Bilin Cause Beading (efc).	F2 40
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	0.00
Pump rate (cfs):	7.49
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	47.63

92.17

42.06

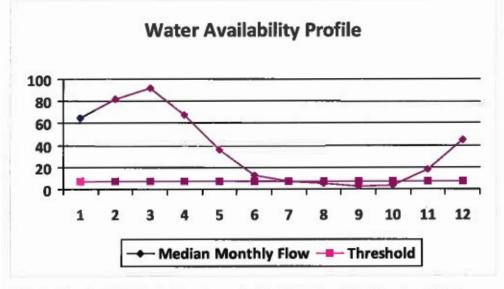
Passby at Location (cfs):	28.82
Min. Gauge Reading (cfs):	76.03
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	4.45
Pump rate (cfs):	6.68
Downstream Demand (cfs):	6.55
Upstream Demand (cfs):	13.10
Base Threshold (cfs):	17.82


"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

12

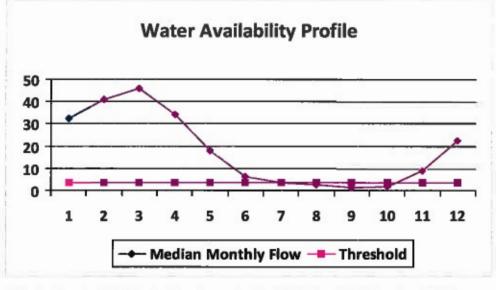
133.96

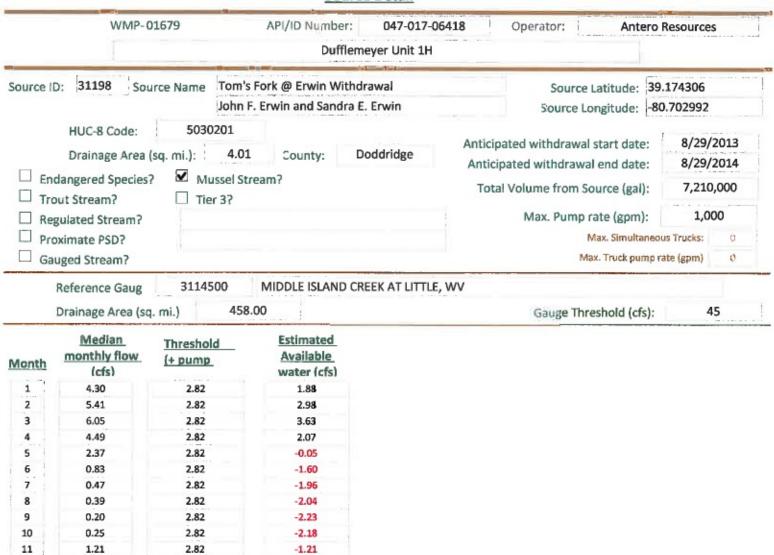
WMP-0167			118 Operator:	Antero	Resources
	Dut	flemeyer Unit 1H			
Source ID: 31195 Source	Name McElroy Creek @ Fore	st Withdrawal	Source	Latitude: 39	.39675
	Forest C. & Brenda L. M	Moore	Source Le	ongitude: -8	0.738197
HUC-8 Code:	5030201		Anticipated withdrawa	start date:	8/29/2013
Drainage Area (sq.	mi.): 88.85 County:	Tyler	Anticipated withdrawa		8/29/2014
☐ Endangered Species? ☐ Trout Stream?	☐ Mussel Stream? ☐ Tier 3?		Total Volume from S		7,210,000
☐ Regulated Stream?			Max. Pump	rate (gpm):	1,000
Proximate PSD?				Max. Simultaneo	us Trucks: 0
☐ Gauged Stream?			M	ax. Truck pump	rate (gpm) 0
Reference Gaug	3114500 MIDDLE ISLAN	D CREEK AT LITTLE, V	WV	+ +	
Drainage Area (sq. mi	.) 458.00		Gauge Thr	eshold (cfs):	45

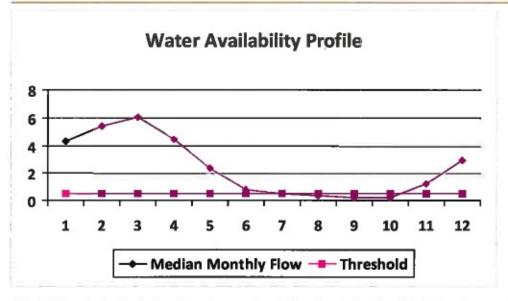

Month	Median monthly flow (cfs)	Threshold (+ pump	Available water (cfs)
1	95.28	19.78	75.68
2	119.86	19.78	100.25
3	134.11	19.78	114.51
4	99.59	19.78	79.99
5	52.54	19.78	32.93
6	18.35	19.78	-1.26
7	10.38	19.78	-9.22
. 8	8.55	19.78	-11.05
9	4.38	19.78	-15.23
10	5.50	19.78	-14.10
11	26.86	19.78	7.26
12	65.63	19.78	46.03

Min. Gauge Reading (cfs): Passby at Location (cfs):	74.19 13.09
Ungauged Stream Safety (cfs):	2.18
Headwater Safety (cfs):	2.18
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	4.46
Base Threshold (cfs):	8.73

WMP-01679	API/ID Number: 0	47-017-06418 Unit 1H	Operator:	Antero	Resources	
100 m 20 m	leathouse Fork @ Gagnon Wit eorge L. Gagnon and Susan C.	* * *			.26054).720998	
HUC-8 Code: 503020 Drainage Area (sq. ml.):	1 60.6 County: Doddr	idge	pated withdrawa		8/29/20 8/29/20	-
✓ Endangered Species? ✓ Musso ☐ Trout Stream? ☐ Tier 3	el Stream?		ipated withdrawa al Volume from S		7,210,0	
Regulated Stream? Proximate PSD?			Max. Pump	rate (gpm): Max. Simultaneo	1,000 us Trucks:	0
Gauged Stream? Reference Gaug 3114500	MIDDLE ISLAND CREEK	AT LITTLE, WV	M	ax. Truck pump r	ate (gpm)	0
Drainage Area (sq. mi.)	458.00		Gauge Thr	reshold (cfs):	45	
Month Month Threshold (+ pump	Estimated Available					


Month	Median monthly flow (cfs)	Threshold (+ pump	Estimated Available water (cfs)
1	64.99	13.39	51.70
2	81.75	13.39	68.46
3	91.47	13.39	78.19
4	67.93	13.39	54.64
5	35.83	13.39	22.55
6	12.51	13.39	-0.77
7	7.08	13.39	-6.20
8 .	5.83	13.39	-7.45
9 !	2.99	13.39	-10.30
10	3.75	13.39	-9.53
11	18.32	13.39	5.04
12	44.76	13.39	31.48


Base Threshold (cfs):	5.95
Upstream Demand (cfs):	2.23
Downstream Demand (cfs):	2.81
Pump rate (cfs):	2.23
Headwater Safety (cfs):	1.49
Ungauged Stream Safety (cfs):	1.49
Min. Gauge Reading (cfs):	71.96
Passby at Location (cfs):	11.74


WMP-01679	API/ID Number	: 047-017-064	418 Operator:	Antero	Resources
	Duffle	emeyer Unit 1H			
1 1 1 to	ouse Fork @ Whit Vhitehair	tehair Withdrawal	-	trans.	.211317 0.679592
HUC-8 Code: 5030201 Drainage Area (sq. mi.): 30.37	County:	Doddridge	Anticipated withdra		8/29/2013 8/29/2014
✓ Endangered Species? ✓ Mussel Stream? □ Trout Stream? □ Tier 3?		Anticipated withdrawal end date: Total Volume from Source (gal):		7,210,000	
Regulated Stream? Proximate PSD?			Max. Pu	mp rate (gpm): Max. Simultaneo	
Gauged Stream?	AUDDIEUGIAND	CREEK AT LITTLE	***	Max. Truck pump r	ate (gpm) 0
Reference Gaug 3114500 Drainage Area (sq. mi.) 458.0		CREEK AT LITTLE,		Threshold (cfs):	45
Median Threshold	Estimated				

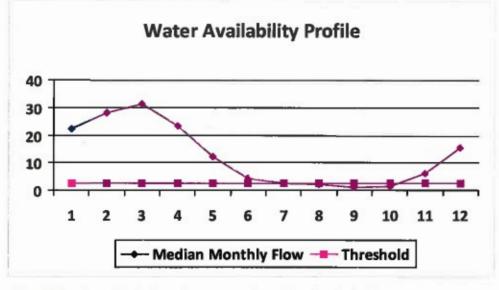
Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Available</u> water (cfs)
1	32.57	6.70	26.15
2	40.97	6.70	34.55
3	45.84	6.70	39.42
4	34.04	6.70	27.62
. 5	17.96	6.70	11.54
6	6.27	6.70	-0.15
7	3.55	6.70	-2.87
8	2.92	6.70	-3.50
9	1.50	6.70	-4.92
10	1.88	6.70	-4.54
11	9.18	6.70	2.76
12	22.43	6.70	16.01

Passby at Location (cfs):	7.29
Min. Gauge Reading (cfs):	69.73
Ungauged Stream Safety (cfs):	0.75
Headwater Safety (cfs):	0.75
Pump rate (cfs):	2.23
Downstream Demand (cfs):	2.81
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	2.98

0.54

2.82

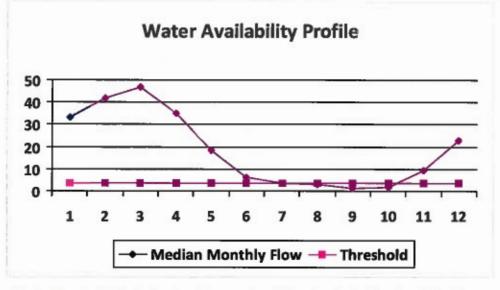
Min. Gauge Reading (cfs): Passby at Location (cfs):	69.73 0.59
Ungauged Stream Safety (cfs):	0.10
Headwater Safety (cfs):	0.10
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	0.39


"Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

12

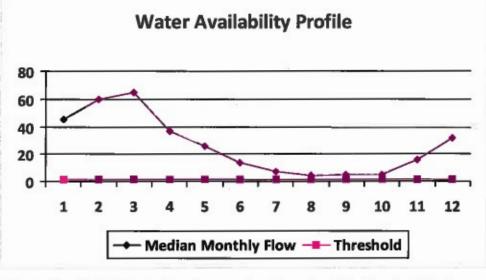
2.96

Source Detail WMP-01679 API/ID Number: 047-017-06418 Operator: Antero Resources Dufflemeyer Unit 1H Arnold Creek @ Davis Withdrawal Source Latitude: 39.302006 Source ID: 31199 Source Name Jonathon Davis Source Longitude: |-80.824561 5030201 HUC-8 Code: 8/29/2013 Anticipated withdrawal start date: 20.83 Doddridge Drainage Area (sq. mi.): County: Anticipated withdrawal end date: 8/29/2014 ✓ Mussel Stream? ☐ Endangered Species? Total Volume from Source (gal): 7,210,000 ☐ Trout Stream? ☐ Tier 3? Max. Pump rate (gpm): 1,000 ☐ Regulated Stream? ☐ Proximate PSD? Max. Simultaneous Trucks: ☐ Gauged Stream? Max. Truck pump rate (gpm) 3114500 MIDDLE ISLAND CREEK AT LITTLE, WV Reference Gaug Drainage Area (sq. mi.) 458.00 45 Gauge Threshold (cfs):


Month	Median monthly flow (cfs)	Threshold {+ pump	Available water (cfs)
1	22.34	5.30	17.29
2	28.10	5.30	23.05
3	31.44	5.30	26.39
4	23.35	5.30	18.30
5	12.32	5.30	7.26
6	4.30	5.30	-0.75
7	2.43	5.30	-2.62
8	2.00	5.30	-3.05
9	1.03	5.30	-4.03
10	1.29	5.30	-3.76
11	6.30	5.30	1.25
12	15.39	5.30	10.34

Passby at Location (cfs):	3.07
Min. Gauge Reading (cfs):	69.73
Ungauged Stream Safety (cfs):	0.51
Headwater Safety (cfs):	0.51
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	2.05

Month	Median monthly flow (cfs)	Threshold (+ pump	Available water (cfs)
1	33.41	6.82	26.95
2	42.02	6.82	35.56
3	47.02	6.82	40.56
4	34.92	6.82	28.45
5	18.42	6.82	11.96
6	6.43	6.82	-0.03
7	3.64	6.82	-2.82
8	3.00	6.82	-3.46
9	1.53	6.82	-4.92
10	1.93	6.82	-4.53
11	9.42	6.82	2.96
12	23.01	6.82	16.55



Passby at Location (cfs):	4.59
Min. Gauge Reading (cfs):	69.73
Ungauged Stream Safety (cfs):	0.77
Headwater Safety (cfs):	0.77
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	3.06

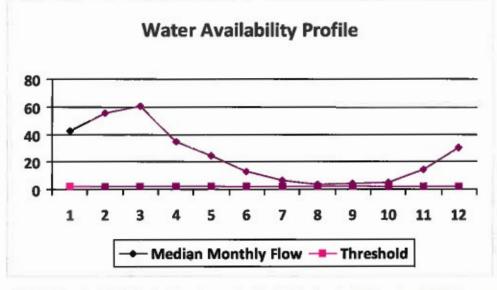
Source Detail WMP-01679 API/ID Number: 047-017-06418 Operator: Antero Resources **Dufflemeyer Unit 1H** Source ID: 31201 South Fork of Hughes River @ Knight Withdrawal Source Name Source Latitude: 39.198369 Tracy C. Knight & Stephanie C. Knight Source Longitude: -80.870969 5030203 HUC-8 Code: 8/29/2013 Anticipated withdrawal start date: 16.26 Ritchie Drainage Area (sq. mi.): County: Anticipated withdrawal end date: 8/29/2014 **Endangered Species?** ✓ Mussel Stream? 7,210,000 Total Volume from Source (gal): ☐ Trout Stream? ☐ Tier 3? 3,000 Max. Pump rate (gpm): Regulated Stream? Max. Simultaneous Trucks: 0 Proximate PSD? ✓ Gauged Stream? Max. Truck pump rate (gpm) 0 Reference Gaug 3155220 SOUTH FORK HUGHES RIVER BELOW MACFARLAN, WV

Month	Median monthly flow (cfs)	Threshold (+ pump	<u>Estimated</u> <u>Available</u> water (cfs)
1	45.67	14.26	31.44
2	59.55	14.26	45.31
3	65.21	14.26	50.97
4	36.87	14.26	22.63
5	25.86	14.26	11.63
6	13.90	14.26	-0.33
7	6.89	14.26	-7.34
8	3.98	14.26	-10.25
9	4.79	14.26	-9.45
10	5.20	14.26	-9.04
11	15.54	14.26	1.30
12	32.06	14.26	17.82

Drainage Area (sq. mi.)

229.00

Passby at Location (cfs):	1.95
Min. Gauge Reading (cfs):	39.80
Ungauged Stream Safety (cfs):	0.00
Headwater Safety (cfs):	0.39
Pump rate (cfs):	6.68
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	5.62
Base Threshold (cfs):	1.56


[&]quot;Threshold", as depicted in the chart above is meant only to indicate the calculated base threshold at the proposed withdrawal location. This value does not include the proposed pump rate or existing demand on the stream. Refer to the monthly breakdown above for a more complete estimation of water availability by month.

22

Gauge Threshold (cfs):

Source ID: 31202 Source Nam	e North Fork of Hughes River @ Davis W	/ithdrawal Source Latitude: 39.	322363
	Lewis P. Davis and Norma J. Davis	Source Longitude: -80	.936771
HUC-8 Code: 50	030203	Anticipated withdrawal start date:	8/29/2013
Drainage Area (sq. mi.):	15.18 County: Ritchie	Anticipated withdrawal end date:	8/29/2014
✓ Endangered Species? ✓ Mussel Stream? ☐ Trout Stream? ☐ Tier 3?		Total Volume from Source (gal):	7,210,000
Regulated Stream?		Max. Pump rate (gpm):	1,000
Proximate PSD?		Max. Simultaneou	us Trucks: 0
☐ Gauged Stream?		Max. Truck pump ra	ate (gpm) 0
Reference Gaug 31	55220 SOUTH FORK HUGHES RIVER B	BELOW MACFARLAN, WV	
Drainage Area (sq. mi.)	229.00	Gauge Threshold (cfs):	22

Month	Median monthly flow (cfs)	Threshold (+ pump	Available water (cfs)
1	42.64	4.42	38.36
2	55.59	4.42	51.32
3	60.88	4.42	56.60
4	34.42	4.42	30.14
5	24.15	4.42	19.87
6	12.98	4.42	8.70
7	6.44	4.42	2.16
8	3.72	4.42	-0.56
9	4.47	4.42	0.19
10	4.85	4.42	0.57
11	14.50	4.42	10.23
12	29.93	4.42	25.65

Passby at Location (cfs):	2.19
Min. Gauge Reading (cfs):	35.23
Ungauged Stream Safety (cfs):	0.36
Headwater Safety (cfs):	0.36
Pump rate (cfs):	2.23
Downstream Demand (cfs):	0.00
Upstream Demand (cfs):	0.00
Base Threshold (cfs):	1.46

west virginia department of environmental protection

Water Management Plan: Secondary Water Sources

WMP-01679

API/ID Number.

047-017-06418

Operator:

Antero Resources

Dufflemeyer Unit 1H

Important:

For each proposed secondary water source identified in your water management plan (i.e., groundwater well, lake/reservoir, recycled frac water, multi-site impoundment, out-of-state source), DEP makes no estimation of the availability of water. These sources may prove to be unsuitable water supplies. Please review the following notes:

- For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Lake/Reservior

Source ID:	31207	Source Name	City of Salem Public Water	Reservior (Lower D Provider	og Run)	Source start date: Source end date:	
		Source Lat:	39.28834	Source Long:	-80.54966	County	Harrison
		Max. Daily Pu	rchase (gal)	1,000,000	Total Volu	me from Source (gal):	7,210,000
	DEP Co	omments:					10

		Commence of the second second		A CONTRACT OF
WMP-01679	API/ID Number	047-017-06418	Operator:	Antero Resources
	Duffler	never Unit 1H		

Important:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

	31208	Source Name	Pennsboro Lake			Source start date: Source end date:	8/29/2013 8/29/2014
		Source Lat:	39.281689	Source Long:	-80.925526	County	Ritchie
		Max. Daily Pu	rchase (gal)		Total Volum	me from Source (gal):	7,210,000
	DEP Co	omments:					
Source ID:	31209	Source Name	Powers Lake (W Private Owner	ilderness Water	Park Dam)	Source start date: Source end date:	8/29/2013 8/29/2014
		Source Lat:	39.255752	Source Long:	-80.463262		Harrison
		Max. Daily Pu	rchase (gal)		Total Volun	ne from Source (gal):	7,210,000
	DEP Co	omments:					

		C. C. LANGE CO. C.	111 2001 1	
WMP-01679	API/ID Number	047-017-06418	Operator:	Antero Resources

Dufflemeyer Unit 1H

Important:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 31210		Source Name	Powers Lake To	NO		Source start date	8/29/2013
						Source end date	8/29/2014
		Source Lat:	39.247604	Source Long:	-80.466642	County	Harrison
		Max. Daily Pu	rchase (gal)		Total Volum	me from Source (gal):	7,210,000
	DEP Co	omments:					

WMP-01679	API/ID Number	047-017-06418	Operator:	Antero Resources
	31 1			

important:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID: 31211 Source Name Poth Lake (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.221306 Source Long: -80.463028 County Harrison Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000 DEP Comments: Source ID: 31212 Source Name Williamson Pond (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000 DEP Comments:								
Private Owner Source end date: 8/29/2014 Source Lat: 39.221306 Source Long: -80.463028 County Harrison Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000 DEP Comments: Source ID: 31212 Source Name Williamson Pond (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000	Other							
Source Lat: 39.221306 Source Long: -80.463028 County Harrison Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000 DEP Comments: Source ID: 31212 Source Name Williamson Pond (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000	Source II	D: 31211	Source Name	Poth Lake (Lar	downer Pond)		Source start date:	8/29/2013
Max. Daily Purchase (gal) DEP Comments: Source ID: 31212 Source Name Williamson Pond (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000				Private Owne	r			14 to 1 - 1 11
Source ID: 31212 Source Name Williamson Pond (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000			Source Lat:	39.221306	Source Long:	-80.463028	County	Harrison
Source ID: 31212 Source Name Williamson Pond (Landowner Pond) Source start date: 8/29/2013 Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000			Max. Daily Pu	rchase (gal)		Total Volu	me from Source (gal):	7,210,000
Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000		DEP C	omments:					
Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000								
Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000								
Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000								
Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000								
Source end date: 8/29/2014 Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000								
Source Lat: 39.19924 Source Long: -80.886161 County Ritchie Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000	Source II	31212	Source Name	Williamson Po	nd (Landowner Po	ond)	Source start date:	8/29/2013
Max. Daily Purchase (gal) Total Volume from Source (gal): 7,210,000							Source end date:	8/29/2014
· · · · · · · · · · · · · · · · · · ·			Source Lat:	39.19924	Source Long:	-80.886161	County	Ritchie
DEP Comments:			Max. Daily Pu	rchase (gal)		Total Volu	me from Source (gal):	7,210,000
		DEP C	omments:					

	10000	74	-		
WMP-01679	API/ID Number	047-017-06418	. ;	Operator:	Antero Resources
	Dufflen	never Unit 1H	-		

Important:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

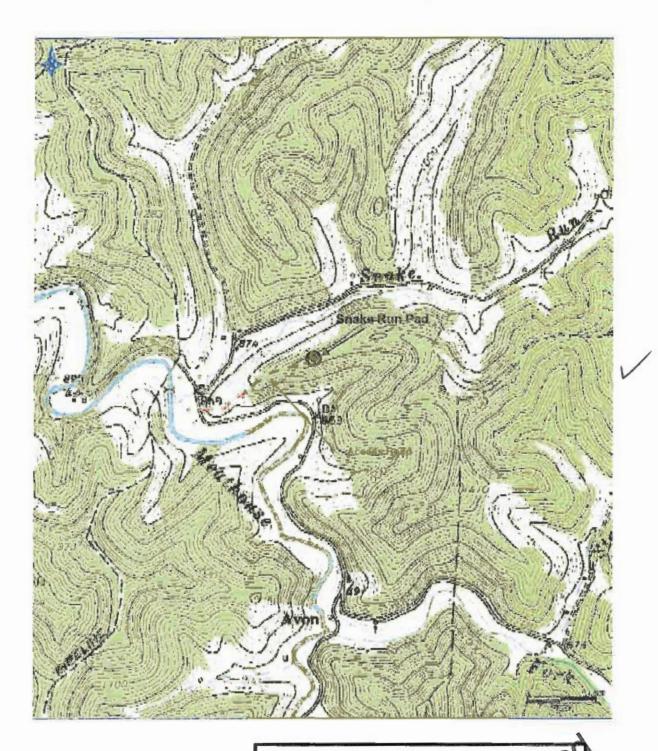
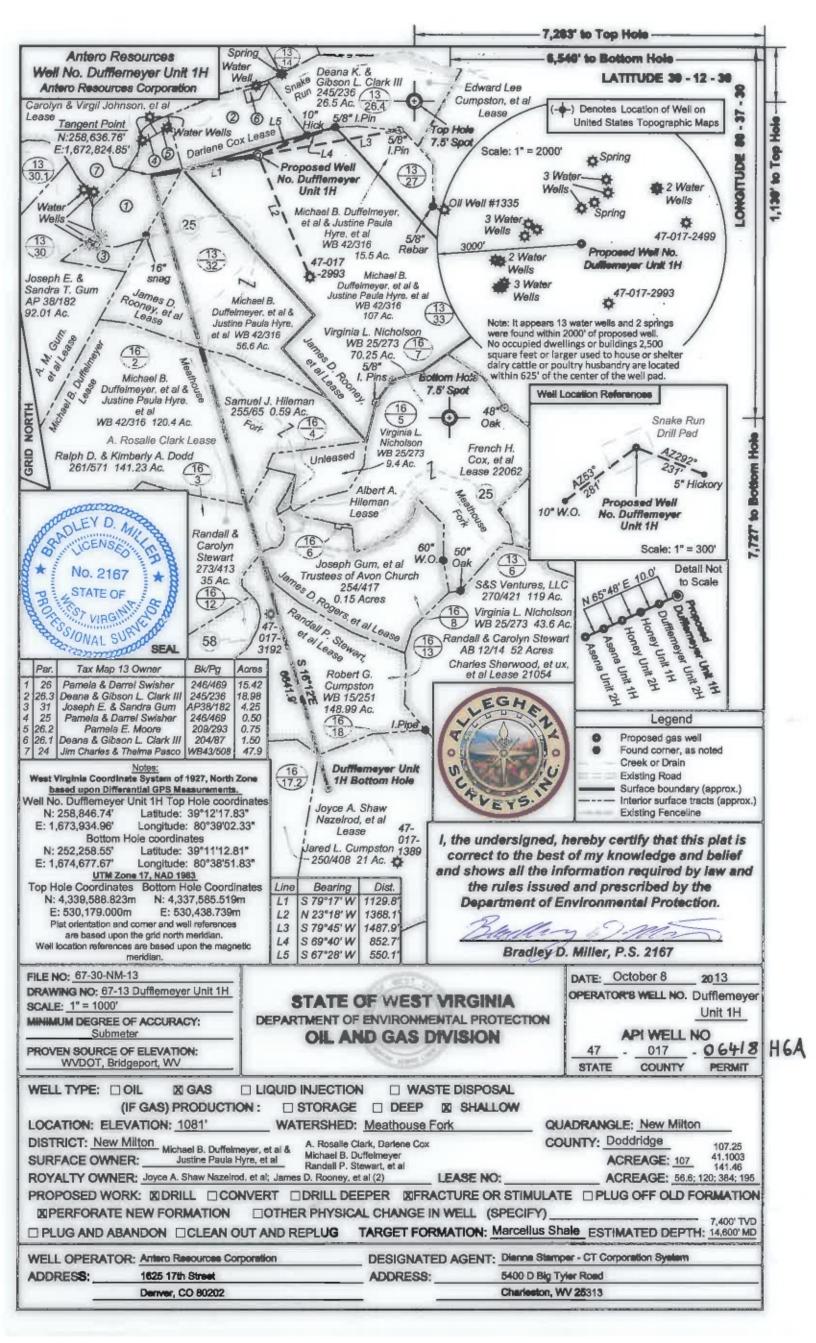

Source ID:	31213	Source Name	Eddy Pond (La	andowner Pond)		Source start date:	8/29/2013
						Source end date:	8/29/2014
		Source Lat:	39.19924	Source Long:	-80.886161	County	Ritchie
		Max. Daily Pu	rchase (gal)		Total Volum	me from Source (gal):	7,210,000
	DEP Co	omments:					
ource ID:	31214	Source Name	Hog Lick Qua	rry		Source start date.	8/29/2011
ource ID:	31214	Source Name	Hog Lick Quar	1.74		Source start date: Source end date:	
ource ID:	31214	Source Name Source Lat:	Andrew Control of the Control	1.74	-80.217941		
ource ID:	31214		Industrial Fac 39.419272	cility		Source end date:	8/29/2014
ource ID:		Source Lat:	Industrial Fac 39.419272	Source Long:		Source end date:	8/29/2014 Marion
ource ID:		Source Lat: Max. Daily Pu	Industrial Fac 39.419272	Source Long:		Source end date:	

	Table 1 have 1 h		per la companya de la companya della companya della companya de la companya della	The state of the s
WMP-01679	API/ID Number	047-017-06418	Operator:	Antero Resources
	Duffler	never Unit 1H		

Important:

- •For groundwater supply wells, DEP recommends that the operator contact the local health department prior to drilling any new well; and reminds the operator that all drinking water wells within 1,500 feet of a water supply well shall be flow- and quality-tested by the operator at the request of the drinking well owner prior to operation of the water supply well.
- •For each proposed multi-site impoundment water source identified in your water management plan (if applicable), DEP will review the withdrawal limits established in the referenced Water Management Plan for current suitability and provide to the operator these limits for each identified intake. Note that withdrawal limits may be modified as necessary based on changing demands upon that water supply.

Source ID:	31215	Source Name	Glade Fork N	line		Source start date:	8/29/2013
			Industrial Fa	cility		Source end date:	8/29/2014
		Source Lat:	38.965767	Source Long:	-80.299313	County	Upshur
		Max. Daily I	Purchase (gal)	1,000,000	Total Vol	ume from Source (gal):	7,210,000
	DEP Co	mments:					
ycled	Frac V	Vater					
		Vater Source Name	Various			Source start date:	8/29/2013
cycled			Various			Source start date: Source end date:	8/29/2012 8/29/2014
			Various	Source Long:			and the second section of
		Source Name	Various Purchase (gal)	Source Long:	Total Vol	Source end date:	and the second section of
	31216	Source Name Source Lat: Max. Daily I	Purchase (gal)	Source Long:		Source end date: County ume from Source (gal):	8/29/2014



Antero Resources Corporation Appalachian Basin Dufflemeyer Unit

Doddridge County
Quadrangle: New Milton Watershed: Meathouse Fork

District: New Milton Date: 11-1-2013

and Gas Innertal Projection

